偏硼酸锂碱熔-ICP-AES 法测定土壤样品中常量元素

摘要:采用偏硼酸锂碱熔-ICP-AES法测定了地矿标准物质中的11种常量元素的含量。实验结果表明,该方法线性相关系数良好(r>0.999),精密度高RSD<3%,测定结果准确,分析结果与标准值相吻合。

关键词: 地质 土壤 常量元素 偏磷酸锂 ICP-AES

全岩样品中各元素的准确测试是地球科学研究的重要手段和依据。电感耦合等离子体发射 光谱(ICP-AES)技术为地矿样品中常量元素快速可靠的分析提供了手段。

应用 ICP-AES 法进行矿物矿石多元素分析的首要问题是分解样品。本文采用偏硼酸锂碱熔分解岩石、土壤等地矿样品,超声波振荡提取熔盐,ICP-AES 法测定其主成分,样品处理方法简单,环境污染较小,能够满足土壤样品中主含量元素分析的要求。

1 实验部分

1.1 仪器

岛津 ICPE-9820 全谱发射光谱仪

1.2 实验器皿及试剂

实验所用玻璃器皿均用硝酸溶液 (1+1) 浸泡 24 小时后,用去离子水冲洗,干燥备用;实验所用 HNO_3 、HCl 为优级纯, $LiBO_2$ $8H_2O$ 为分析纯,实验用水为超纯去离子水。

1.3 样品的前处理方法讨论

对于岩石、土壤等地矿样品,目前常用消解方法是酸溶法或碱熔法。酸溶法的最大缺陷是因 HF 的使用而无法分析 Si 元素; 传统碱熔法多采用碳酸钠-过氧化钠或其他氧化性熔剂熔融。由于需要大量熔剂从而引入大量的盐类,造成酸化提取后的溶液不能直接上机测定,需要进一步分离,或采用高倍稀释,这样会影响分析的准确度及较低含量元素的测定限,且无法测定 Na 元素。

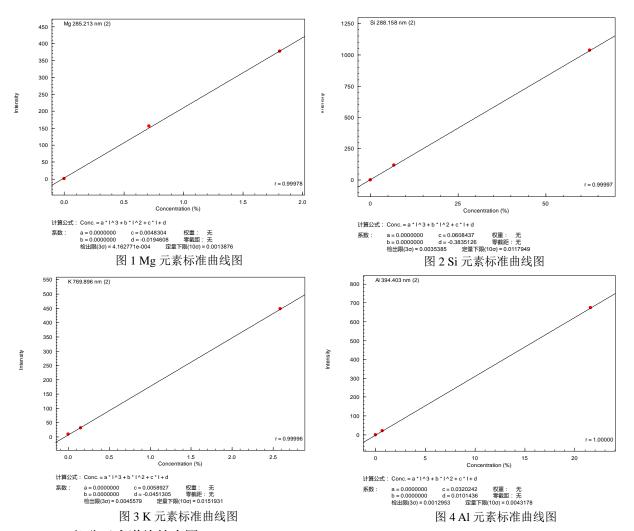
偏硼酸锂($LiBO_2$)属于高熔点的非氧化性熔剂,对试样有很强的分解能力,使用少量即可有效分解其中以氧化物存在的造岩元素。而且使用 $LiBO_2$ 作为熔剂可检测 Si 和 Na 等传统消解方法无法检测的元素。

对于检测地质样品中常量元素,碱熔法会引入盐分。因此为了降低盐分造成的基质干扰,本文中将取样量控制在 30 mg 左右。

称取 120 mg 无水 LiBO₂置于 10 mL 石墨坩埚中,再准确称取 30.0 mg 样品,与无水 LiBO₂混匀。将石墨坩埚放入瓷坩埚中,并置于 1050℃高温炉中熔融 15 min。取出坩埚,立即将赤热的熔珠倒入装有 30 mL 5% 王水的 100 mL 烧杯中,熔融物立即炸裂为细小的微粒。将烧杯放入超声波振荡器,待熔盐完全溶解,溶液清亮后(约 15 min),移入 25 mL 容量瓶中,准确加入 1.0 mL 250 g/mL 的 Cd 溶液作为内标,用 5%的王水稀释至刻度,摇匀备用。

1.4 仪器参数

对于主含量元素的检测,适合采用径向观测方式,可获得较大线性范围,并可更有效去除基体干扰。本试验的仪器工作条件如表 1 所示。


衣 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	表 1	仪器工作条件	ŧ
---	-----	--------	---

观测	雾化器	矩管	雾化室	辅助气流速	等离子气流速	载气流速	高频频率	高频输出功率
方向	类型	类型		(L/min)	(L/min)	(L/min)	(MHz)	(kW)
径向	同心	Mini	旋流	0.6	10	0.7	27.12	1.2

2. 结果与讨论

2.1 标准曲线配制

将国家标准物质 GBW 07401、GBW 07405、GBW 07120 等同时消解并测定,得到各元素校准曲线。如图 1~84 所示。

2.2 部分元素谱峰轮廓图

多元素同时分析时,因为发出的谱线数量非常多,所以谱线可能存在重叠(称为光谱干扰)。当样品中含多种组分并存在光谱干扰时,岛津 ICPESolution 软件具有独特的"最佳波长优化"功能,可根据元素各波长灵敏度以及相互干扰情况,自动选择最佳波长。如图 5 所示。所选各元素分析波长如图 6~图 9。

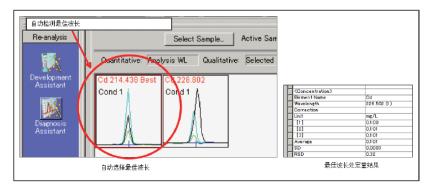
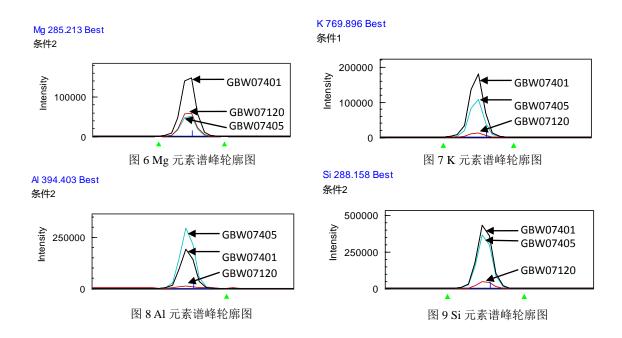



图 5 ICPESolution 软件"自动选择最佳波长"功能示意图

2.3 样品分析结果及检出限

利用 ICPE-9820 测量土壤样品中的常量元素,并对样品空白进行连续 10 次测定,取 3 倍的空白标准偏差除以标准曲线斜率得到各元素的检出限。结果如表 2。

表 2 样品分析结果

元素	波长	方法检出	GBW07401	测定结果	RSD	GBW07405	测定结	RSD
	(nm)	限(%)	标准值(%)	(%)	(%)	标准值(%)	果(%)	(%)
SiO ₂	288.158	0.0035	-	-	-	52.57±0.16	52.62	0.09
Al_2O_3	394.403	0.00082	14.18±0.14	14.07	0.28	-	-	-
Fe_2O_3	234.349	0.00088	5.19 ± 0.09	5.20	0.20	-	-	-
MgO	285.213	0.00044	-	-	-	0.61 ± 0.06	0.60	0.11
CaO	220.861	0.030	1.72 ± 0.06	1.70	1.47	-	-	-
K_2O	769.896	0.0046	-	-	-	1.5±0.04	1.5	1.04
Na ₂ O	589.592	0.0016	-	-	-	0.12 ± 0.02	0.104	0.42
Mn	257.210	0.000021	-	-	-	0.136±0.0071	0.135	0.31
P	178.287	0.014	-	-	-	0.039 ± 0.0034	0.041	2.31
Ba	455.403	0.00012	-	-	-	0.0296±0.0026	0.294	0.66

Zn 213.856 0.00029 - - - 0.0494 ± 0.0025 0.0502 0.21

3. 结论

采用偏硼酸锂碱熔法前处理,ICPE-9820测定了土壤样品中的11种常量元素的。实验结果表明,该方法线性相关系数良好(r>0.999),精密度高RSD<3%,测定结果准确,分析结果与标准值相吻合。