GC法测定土壤中酚类化合物含量

摘要:本文利用岛津公司 GC-2010 Plus 气相色谱仪,建立了测定土壤中 21 种酚类化合物含量的定量方法。在标准曲线浓度范围 $1\sim100~\mu g/mL$ 内,各组分线性关系良好,相关系数 r 均达到 0.9993 以上,峰面积重复性良好,RSD%小于 4.46%,在 2~mg/kg 加标浓度下,各组分平均回收率在 $62.42\%\sim82.69\%$ 之间。该方法灵敏度高,操作简单,可用于土壤中 21 种酚类化合物的测定。

关键词: 气相色谱仪 土壤 酚类化合物

苯酚及其衍生物作为化工合成的基础原料,广泛应用于造纸和化工行业。环境中酚类化合物的来源十分广泛,包括化工及制药行业废水、有机农药降解、汽车尾气等。酚类化合物通过空气和水传播,可长期残留于土壤中,并具有致癌、致畸、致突变的潜在毒性,对生态环境、动植物和人体健康会造成严重的危害。

美国国家环保署(Environmental Protection Agency, EPA)公布的致癌物质中包括酚类物质,因此,在上世纪70年代中期,美国已将11种酚类化合物列入环境优先控制污染物之中。中国也于上世纪80年代末提出了环境优先控制污染物,其中包括6种酚类化合物。

我国环境保护标准 HJ 703-2014 《土壤和沉积物 酚类化合物的测定 气相色谱法》于 2014 年底开始执行,本文参考此标准,利用岛津气相色谱仪 GC-2010 Plus,建立了测定土壤中 21 种酚类化合物含量的方法。样品通过微波法进行提取,净化后上样分析,实验结果证明该方法是一种简便、可靠的酚类化合物的分析方法。

1. 实验部分

1.1 仪器

气相色谱仪: GC-2010 Plus 气相色谱仪

1.2 分析条件

进样口温度: 270℃

进样量: 1 μL

进样方式:不分流进样

载气: 氮气

柱流量: 1.00 mL/min

线速度: 26.5 cm/sec

色谱柱: SH-Rtx-1, 30m×0.25mm×0.25μm

1.3 样品前处理

柱温程序: 60℃(1min)_8℃/min_250℃ (4min)

检测器: FID

检测器温度: 280℃

氡气: 40 mL/min

空气: 400 mL/min

尾吹气: 30 mL/mi

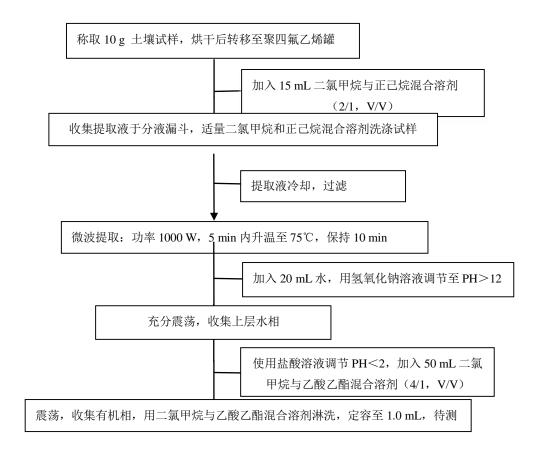
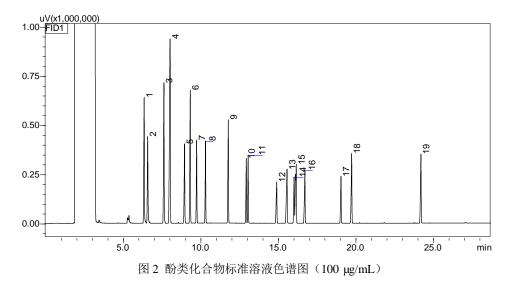
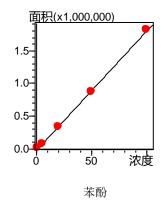
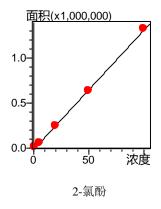


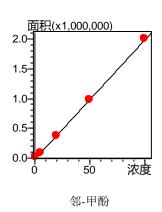
图 1 样品前处理流程图

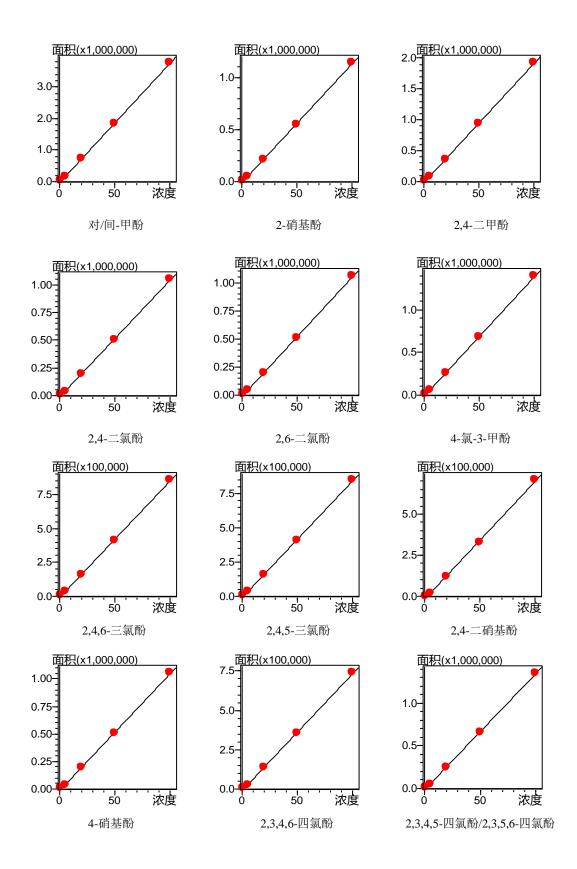
2 结果与讨论

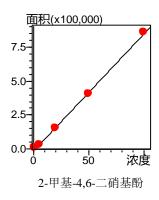
2.1 标准色谱图

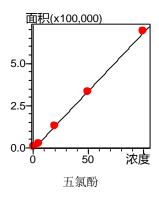



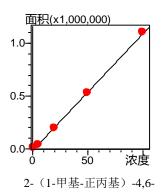

表 1 酚类化合物保留时间、中英文名称、CAS 号

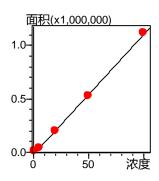

No.	化合物名称	英文名称	CAS 号	保留时间 /min
1	苯酚	Phenol	108-95-2	6.357
2	2-氯酚	2-Chrorophenol	95-57-8	6.594
3	邻-甲酚	2-Methylphenol	95-48-7	7.632
	对/间-甲酚	3-Methylphenol/	108-39-4/	0.021
4		4-Methylphenol	106-44-5	8.021
5	2-硝基酚	2-Nitrophenol	88-75-5	8.965
6	2,4-二甲酚	2,4-Dimethylphenol	105-67-9	9.330
7	2,4-二氯酚	2,4-Dichlorophenol	120-83-2	9.745
8	2,6-二氯酚	2,6-Dichlorophenol	87-65-0	10.319
9	4-氯-3-甲酚	4-Chloro-3-methylphenol	59-50-7	11.786
10	2,4,6-三氯酚	2,4,6-Trichlorophenol	88-06-2	12.948
11	2,4,5-三氯酚	2,4,5-Trichlorophenol	95-95-4	13.067
12	2,4-二硝基酚	2,4-Dinitrophenol	51-28-5	14.897
13	4-硝基酚	4-Nitrophenol	100-02-7	15.547
14	2,3,4,6-四氯酚	2,3,4,6-Tetrachlorophenol	58-90-2	16.031
	2,3,4,5-四氯酚/	2,3,4,5-Tetrachlorophenol/	4901-51-3/	16.117
15	2,3,5,6-四氯酚	2,3,5,6-Tetrachlorophenol	935-95-5	16.117
16	2-甲基-4,6-二硝基酚	2-Methyl-4,6-dinitrophenol	534-52-1	16.713
17	五氯酚	Pentachlorophenol	87-86-5	19.051
	2-(1-甲基-正丙基)-			
18	4,6-二硝基酚(地乐	Dinoseb	88-85-7	19.738
	酚)			
19	2-环己基-4,6-二硝基酚	2-Cyclohexyl-4,6-Dinitrophenol	131-89-5	24.205


2.2 标准曲线


使用二氯甲烷和乙酸乙酯混合溶剂(4/1,V/V)将 21 种酚类化合物混合标准溶液稀释 至 1、5、20、50、100 μ g/mL,分别取 1 μ L 标准溶液进样,各组分标准曲线见图 3 所示。线性回归方程、相关系数和检测限(3 倍信噪比)数据如表 2。







二硝基酚 (地乐酚)

2-环己基-4,6-二硝基酚

图 3 酚类化合物标准曲线

表 2 酚类化合物的线性回归方程、相关系数及检出限

No.	化合物名称	线性回归方程	相关系数r	检出限(μg/mL)
1	苯酚	Y=18156.6X-14409.8	0.9998	0.048
2	2-氯酚	Y=13248.4X-10924.8	0.9998	0.076
3	邻-甲酚	Y=20032.1X-15693.1	0.9998	0.043
4	对/间-甲酚	Y=37701.5X-26030.3	0.9999	0.028
5	2-硝基酚	Y=11384.7X-8807.4	0.9997	0.081
6	2,4-二甲酚	Y=19281.2X-14644.1	0.9998	0.043
7	2,4-二氯酚	Y=10620.4X-7537.2	0.9997	0.079
8	2,6-二氯酚	Y=10496.7X-8463.7	0.9997	0.083
9	4-氯-3-甲酚	Y=13956.3X-10595.5	0.9998	0.057
10	2,4,6-三氯酚	Y=8569.3X-6720.3	0.9997	0.095
11	2,4,5-三氯酚	Y=8525.5X-7244.5	0.9997	0.096
12	2,4-二硝基酚	Y=7117.6X-13267.7	0.9993	0.25
13	4-硝基酚	Y=10582.8X-11108.6	0.9997	0.092
14	2,3,4,6-四氯酚	Y=7395.3X-7376.4	0.9997	0.12
15	2,3,4,5-四氯酚	Y=13589.1X-14108.0	0.9999	0.12
13	/2,3,5,6-四氯酚			
16	2-甲基-4,6-二硝基	Y=8623.1X-11156.4	0.9996	0.14
17	五氯酚	Y=6801.9X-6993.9	0.9997	0.14

	2-(1-甲基-正丙				
18	基)-4,6-二硝基酚	Y=11065.9X-12018.6	0.9997	0.099	
	(地乐酚)				
19	2-环己基-4,6-二硝	Y=11223.6X-16130.8	0.9995	0.13	

2.3 重复性结果

取 1 μg/mL 酚类化合物标准溶液 1 mL 于样品瓶中,连续 6 针平行样分析,进行样品的 重复性实验,考察仪器精密度。21 种酚类化合物的峰面积重复性结果见表 3。

表 3 酚类化合物标准溶液峰面积重复性结果 (n=6)

No.	化合物名称	1	2	3	4	5	6	RSD%
1	苯酚	13589	14105	13534	13705	13709	13610	1.50
2	2-氯酚	10362	10953	9926	10172	10392	9610	4.46
3	邻-甲酚	14885	14619	14725	14800	15391	14797	1.82
4	对/间-甲酚	27616	27791	27616	27761	27574	27974	0.54
5	2-硝基酚	10306	10355	10099	10497	10272	10423	1.37
6	2,4-二甲酚	13966	13807	13937	13880	13945	14161	0.85
7	2,4-二氯酚	8861	8507	8123	8112	8065	8296	3.70
8	2,6-二氯酚	7824	7824	7918	7921	7654	8003	1.53
9	4-氯-3-甲酚	10258	10333	10164	10393	10529	10480	1.32
10	2,4,6-三氯酚	7330	7385	7221	7323	7299	7402	0.89
11	2,4,5-三氯酚	6882	7253	7161	7320	7304	7362	2.45
12	2,4-二硝基酚	2707	2646	2677	2739	2845	2758	2.56
13	4-硝基酚	7051	6950	6881	7323	6993	6940	2.25
14	2,3,4,6-四氯酚	5410	5327	5229	5368	5393	5306	1.25
15	2,3,4,5-四氯酚/2,3,5,6- 四氯酚	9670	9763	9711	9686	9923	9760	0.94
16	2-甲基-4,6-二硝基酚	4534	4844	4744	5077	4984	5000	4.13
17	五氯酚	5037	4771	5009	4815	4879	5034	2.39
	2-(1-甲基-正丙基)-							
18	4,6-二硝基酚(地乐	6826	7045	6685	7186	7277	6825	3.33
19	酚) 2-环己基-4,6-二硝基酚	5175	5817	5468	5659	5738	5532	4.14

2.4 回收率实验

称取烘干后空白土壤样品 10.0 g 至聚四氟乙烯消解罐中,添加适量的酚类化合物标准溶液,使各酚类化合物在土壤样品中的浓度为 2 mg/kg,按着样品前处理及净化过程进行加标样品制备,平行制备 3 个加标样品,各取 1 μL 加标样品溶液进样分析。加标样品色谱图如图 4,空白土壤样品回收率实验结果如表 4。

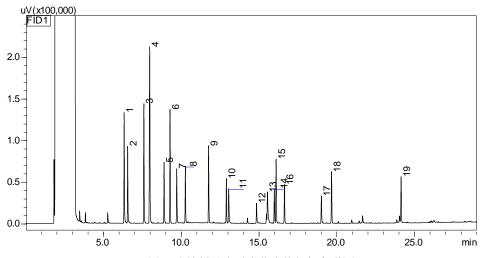


图 4 土壤样品中酚类化合物加标色谱图

表 4 土壤样品中酚类化合物回收率实验结果

No.	化合物	回收率 1 (%)	回收率 2 (%)	回收率 3 (%)	平均回收率 (%)	RSD%
1	苯酚	81.15	81.08	85.77	82.67	3.47
2	2-氯酚	81.20	81.04	85.62	82.60	3.38
3	邻-甲酚	80.10	80.14	84.91	81.71	3.61
4	对/间-甲酚	81.08	81.06	85.93	82.69	3.59
5	2-硝基酚	77.76	77.54	82.40	79.23	3.71
6	2,4-二甲酚	79.54	79.52	84.46	81.17	3.74
7	2,4-二氯酚	78.34	78.24	83.01	79.86	3.65
8	2,6-二氯酚	79.11	79.03	83.74	80.63	3.60
9	4-氯-3-甲酚	78.61	78.49	83.48	80.19	3.80
10	2,4,6-三氯酚	77.01	76.87	81.71	78.53	3.77
11	2,4,5-三氯酚	76.28	75.69	80.14	77.37	3.38
12	2,4-二硝基酚	63.66	60.14	63.47	62.42	3.94
13	4-硝基酚	81.02	77.06	80.23	79.43	2.89
14	2,3,4,6-四氯酚	72.79	73.00	77.79	74.53	4.11
15	2,3,4,5-四氯酚/2,3,5,6- 四氯酚	78.29	78.24	83.18	79.90	3.79
16	2-甲基-4,6-二硝基酚	71.97	72.04	77.00	73.67	4.41
17	五氯酚	70.56	71.45	75.48	72.50	3.99
	2- (1-甲基-正丙基) -					
18	4,6-二硝基酚(地乐	74.89	75.27	79.62	76.59	3.78
	酚)					
19	2-环己基-4,6-二硝基酚	74.48	75.59	79.28	76.45	3.73

3 结论

本文采用岛津公司气相色谱仪(GC-2010 Plus)测定土壤中21种酚类化合物的含量。在标准曲线浓度范围1~100 μg/mL内,线性关系良好,相关系数r均为0.9993以上,针对1 μg/mL标准样品重复6次进样,酚类化合物各组分峰面积重复性良好,RSD%均小于4.46%,在2 mg/kg加标浓度下,各组分回收率在62.42%~82.69%之间。该方法操作简单、可靠,可用于土壤中21种酚类化合物的测定。