分类图片: 
英文名: 
application document

试验机应用文集-高分子与复合材料分册

自19世纪以来,随着工业化的推进和科学技术的发展,尤其是化学工业的崛起,人类利用天然矿物、植物、石油等原料,创造和合成了众多高分子材料与复合材料,如合成橡胶、塑料、合成纤维、化肥、染料、玻纤、碳纤等。这些新材料以其优异的性能和广泛的应用,极大地推动了现代工业和社会生活的发展。

为了确保高分子与复合材料的质量和性能,进行科学的测试和分析是至关重要的。这不仅涉及到产品的设计和制造,更关乎到产品的质量控制、安全性评估、失效分析等方面。在新材料、新工艺、新技术的研究和开发中,材料试验机与毛细管流变仪是必不可少的工具。它能进行各种力学性能、流动性测试,如拉伸压缩、弯曲、剪切、粘弹性、熔融性、流变性等,并能满足GB、ISO、DIN、ASTM、JIS等各类国际标准或相关行业标准的要求。

全谱二维液质联用系统应用文集

在生物医药、天然产物、食品安全、环境毒理等领域,通常需要分离、分析多种目标物质,当各目标物极性差异很大时,则难以用一个方法完成对所有物质的分析。高极性和低极性目标物,在常规的色谱分离方案中,正如同鱼和熊掌,不可兼得。目前普遍的应对方案,是采用两种色谱分离方法,如亲水作用色谱柱和反相色谱柱,分别对应进行高极性物质和中低极性物质的分析。这样的处理方式,往往需要耗费双倍的前处理时间、分离分析时间,不利于提高分析效率;且会产生双份数据、部分数据存在交叉冗余的不确定性,定性分析难度高。

作为全球知名的实验室分析测试服务供应商,岛津致力于提供技术领先的仪器设备及全面可靠的综合解决方案。为了解决上述无法使用常规方法同时分离高极性和低极性目标物的难题,岛津研发推出了全谱二维液质联用系统。该系统拥有极性分流、在线稀释和双重梯度三大专利技术,适合于复杂基质中多目标物或完全未知目标物的全组分定性定量分析,可作为宽极性多目标物数据库的通用分离平台,并适用于极限相差较大的两类关联物质的同时分析,而且该系统内含一个UHPLC子系统,方便日常常规检测。该系统为新一代多功能质谱前端平台,可与三重四极杆和飞行时间质谱联用,助力复杂基质中宽极性痕量物质的定性、定量、筛查和分析。

GB 5749-2022《生活饮用水卫生标准》整体解决方案

GB 5749-2022《生活饮用水卫生标准》于 2022 年 3 月 15 日正式发布,并将于 2023年 4 月 1 日起全面实施;岛津公司始终密切关注这一标准的制修订共走,并积极参与到饮用水标准检验方法的制订与验证工作中。其中《生活饮用水中三价铬和六价铬的测定》标准使用岛津的 LC-ICPMS 联用仪器验证,得到了很好的测定结果;同时岛津公司 AOELCMSMS 仪器(大体积进样在线固相萃取 LCMSMS 系统)可简化饮用水样品的前处理富
集工作,结合岛津超高灵敏度的 LCMSMS 仪器,更有利于广大分析工作者轻松应对新标准中相关化合物的检测工作;岛津公司的 Off-flavor 异味分析系统,不仅可以应对新版《饮用水卫生标准》中新增的 2- 甲基异莰醇及土臭素异味物质的测定,同时也可应对饮用水中异味问题的突发事件。本解决方案按照生活饮用水检测项目进行分类,分别为:非金属元素、金属元素、有机物指标、农药指标、消毒副产物指标、消毒剂指标等 6 章,同时也增加了岛津特色机种在饮用水检测中的应用一章;这不但体现了公司 " 为了人类与地球的健康 " 这一基本宗旨,也为我国广大的水质分析工作提供了重要而详细的分析方法参考和依照,希望对广大水质分析工作者有所帮助。

中药配方颗粒液相色谱图谱集

为持续扩大标准复现品种,通过进一步与中药配方颗粒企业开展合作研究,目前已形成160个已公布中药配方颗粒国家标准品种的液相色谱图谱报告,形成这本《中药配方颗粒液相色谱图谱集》,此文集中所有品种均包含特征图谱或指纹图谱,部分品种涵盖含量测定图谱。另外,针对需要减少分析时间提高工作效率或是现有条件受限制的情况,以赤芍、醋延胡索以及白芷为代表品种进行HPLC法与UHPLC法互相转换的演示。《中药配方颗粒液相色谱图谱集》,直观展示了特征图谱或指纹图谱、含量测定图谱的实测数据。

岛津Q-TOF系统应用文集(医药篇)

自J. J. Thomson开创性地将质谱仪引入科学界以来,质谱技术历经了波澜壮阔的发展历程,多位科学家的卓越贡献更是为其赢得了诺贝尔奖的殊荣。特别是近年来,随着田中耕一与Fenn等先驱在软电离技术上的突破,质谱技术迎来了前所未有的飞跃,新型质谱仪器如雨后春笋般涌现,极大地拓宽了其在科学研究中的应用边界。

在药品安全日益成为全球关注焦点的背景下,药品检测与药物研发领域对分析手段的需求日益严苛。面对样品量大、成分复杂、含量微量的挑战,质谱技术凭借其快速性、准确性及高灵敏度,在药物分析、药物代谢等关键领域展现出不可替代的优势,成为科研人员手中不可或缺的分析利器。

质谱技术的革新步伐从未停歇,高端质谱仪器的不断涌现,不仅提升了分析性能,也推动了科研方法的革新。其中,Q-TOF质谱仪作为医药研究领域的璀璨明珠,其能够精确测定母离子与子离子的质量数,为未知化合物的结构鉴定提供了强有力的支持,尤其是在药物质量控制及代谢产物识别方面展现出卓越的性能。同时,TOF技术的持续优化,如岛津引入的UF-grating离子提取技术与UF-FlightTube精准温控飞行管等创新,进一步提升了仪器的质量准确度与分辨率,为科学研究注入了新的活力。

生物技术药物体内生物分析解决方案

在21世纪的科技浪潮中,生物技术药物(以下简称“生物药”)研发作为医药科技领域的璀璨明珠,正以其独特的创新魅力和卓越的治疗效果,引领着医疗健康事业的革新与发展。生物药,作为生命科学与生物技术深度融合的产物,不仅在恶性肿瘤、自身免疫性疾病、罕见病等重大疾病的治疗中展现出非凡的疗效,还以其高度的靶向性、较低的副作用和较长的半衰期,赢得了医学界和广大患者的广泛赞誉。在全球医疗健康事业中,生物药研发已成为推动医药行业转型升级、提升国民健康水平的核心力量。

我国政府高度重视生物药研发,将其列为战略性新兴产业,并出台了《“健康中国2030”规划纲要》和《“十四五”生物经济发展规划》等一系列鼓励生物药研发的政策法规,为生物药研发提供了良好的政策环境和市场机遇。这些举措不仅激发了国内科研机构和制药企业的创新活力,还吸引了众多跨国制药企业的关注和投资,使得中国生物药市场呈现出蓬勃发展的态势。

在生物药研发过程中,药物体内分析发挥着举足轻重的作用。它能够帮助科研人员精准评估药物的体内行为,包括药物的吸收、分布、代谢和排泄特性,从而指导药物剂量的确定、优化给药方案,以及预测药物的潜在毒性和药效。因此,体内分析技术的准确性和可靠性直接关系到生物药研发的成功与否,是推动新药从实验室走向临床的关键所在。

新能源用氢燃料关键分析技术方案

化石能源的开发和使用对生态环境已经产生了许多负面的影响,氢能是公认的清洁能源载体,从开发到利用全过程可实现零排放、零污染,是21世纪最具发展潜力的清洁能源之一,也是未来能源战略的关键。与传统能源相比,氢能具有能量密度大、转化效率高,不产生污染物,发电效率和热值高,且输送方便,运输损耗小,可贮存等优点。根据国际能源署预计,到2040年全球能源需求将增长30%,能源清洁、低碳、高效及可持续发展成为大趋势。

氢气来源广泛,煤制氢、石脑油裂解制氢、天然气制氢、水电解制氢、甲醇制氢等制氢技术已经非常成熟。氢气的贮存和运输是氢气使用的关键环节,目前氢气运输的主要途径是压缩后通过拖车和管道方式运输,液氢是一种极具潜力的存储技术。

早在2019年3月,氢能就被首次写入《政府工作报告》;2022年3月,国家发展和改革委员会发布《氢能产业发展中长期规划(2021—2035年)》,氢能被确定为未来国家能源体系的重要组成部分和用能终端实现绿色低碳转型的重要载体,氢能产业被确定为战略性新兴产业和未来产业重点发展方向;2024年的两会再次加速了氢能产业的布局,报告提出,要巩固扩大智能网联新能源汽车等产业领先优势,加快前沿新兴氢能、新材料、创新药等产业发展。此外,各省氢能优惠政策频出,引导氢能及新能源汽车的发展进入快车道。

守护健康:2025年版《中国药典》应对宝典

《中国药典》由国家药典委员会编制,是中国药品标准的权威文献。2025年版《中国药典》是建国以来的第12版药典,已于2025年3月1日正式发行,将于2025年10月1日正式启用。

2025年版《中国药典》共四部。一部收载中药,二部收载化学药品,三部收载生物制品及相关通用技术要求和指导原则,四部收载通用技术要求、指导原则和药用辅料。与前版相比,2025年版《中国药典》在体系和框架上进行了全方位的革新,这些变革对于提升药品标准的科学性、系统性、安全性以及规范性有着重要意义,不仅为公众用药安全筑牢了坚实防线,还为医药产业的高质量发展注入了强劲动力。

岛津中国-分析中心-临床科研论文选集

临床科研领域作为医学科学的关键组成部分,连接基础医学研究与临床实践。它聚焦于对人体疾病的诊断、治疗和预防等实际问题,通过科学的研究方法,探索疾病的发生机制、发展规律以及有效的干预措施,旨在提高医疗质量、改善患者的健康状况。临床科研的成果能够为临床医生提供更加精准、有效的诊疗方案。其研究范围广泛,涵盖了从基础的生物医学研究到临床实践中的各个环节,涉及多个学科的交叉融合。

分析质量源于设计( AQbD) 在HPLC方法开发中的实践案例集

液相色谱方法的开发过程是一个严谨且系统化的过程,需要根据目标化合物的性质,选择流动相、色谱柱和检测器,创建批表,分析数据,并在分析结果的基础上不断完善分析参数。这个过程耗时且复杂,分析人员要具备专业的色谱知识,并可能需要进行多次尝试和调整,才能找到一个合适的方法。传统的方法开发模式往往显得比较盲目,不仅费时费力,成本也较高。此外,在传统方法开发中,往往没有充分考虑各参数的耐用性和稳健性,导致在不同实验室转移时,方法测试的重现性常常受到挑战。

为了解决这些问题,采用系统化的方法开发策略显得尤为重要。这种策略不仅强调全面的实验设计和数据分析,还注重对方法的稳健性进行评估,从而增强方法的可重现性和可靠性。通过实施更加科学的方法开发流程,可以显著提高效率,降低成本,同时确保所开发的方法在不同环境下的稳定性与一致性。

ICH Q14为分析方法开发提供了实践指南,强调分析质量源于设计的理念(AQbD)。在AQbD的框架下,方法开发不仅仅是基础实验和结果分析的简单组合,而是需要进行全面的风险评估和多变量分析,通过设计实验(DoE) 来系统性评估影响分析结果的关键因素。借助方法开发工具和统计学软件进行数据分析,可以得到一个高性能、耐用性好、设计空间可靠、准确性高且收集的方法知识丰富的分析方法。这种方法的使用生命周期长,大大节省了人力和时间成本。

页面